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1
MULTI-ASPECT VECTOR SEARCH INDEX
CREATION AND RETRIEVAL METHOD AND
SYSTEM

TECHNICAL FIELD

One embodiment relates to a computer-implemented
method for creating a search index for a collection of digital
documents stored in a document repository, and another
embodiment relates to a computer-implemented method for
retrieving one or more pieces of content from a collection of
documents stored with multi-aspect vectors in a digital
document repository. Another embodiment relates to sys-
tems configured to execute such methods. A further embodi-
ment relates to computer program products configured to
perform the proposed methods and to computer-readable
media comprising such computer programs.

BACKGROUND

Organizations often collect large volumes of documents

containing administrative and/or technical information use-
ful for their business. However, organizations do not always
have the resources to store their documents in an easily
searchable manner.
Recent advances in information searching and document
retrieval systems have led to the use of vector embeddings
to represent the contents of documents and search queries
through vectors that exist in a high-dimensional vector
space. In vector-based embedding techniques, semantically
similar items are represented by vectors that lie closer
together within this vector space based on an appropriate
distance metric. When vector embedding techniques are
used for semantic document searching, the textual data (e.g.,
words, sentences, paragraphs, or the entire document) is
transformed using trained language models, such as Bidi-
rectional Encoder Representations from Transformers
(BERT) or Generative Pre-trained Transformer (GPT). The
textual data is thereby represented using high-dimensional
vectors to enable effective matching of queries to documents
based on the meaning of the document content rather than on
literal matching between keywords in a query and words in
the documents. However, quickly retrieving the most rel-
evant documents from a large-scale repository remains
challenging.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments will now be described, by way of example
only, with reference to the accompanying schematic draw-
ings in which corresponding reference symbols indicate
corresponding parts. Multiple instances of an element may
each include separate labels appended to the reference
number (for instance, “78a” and “784”). The reference
number may be used without an appended label (e.g., “78”)
to generally refer to an unspecified instance or to all
instances of that element. Similarly, a specific instance of an
element may be designated with a single quote, e.g., “54°”
vs. “547.

FIG. 1 schematically shows a component diagram of a
computer-implemented system for retrieving documents
from a document collection using vector embeddings,
according to an embodiment.

FIG. 2 shows a flowchart of a method for ingesting a
collection of documents in a vector embedding system,
according to an embodiment.
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FIG. 3 shows a flowchart of a method for retrieving
documents from a documents database in response to a
search query, according to an embodiment.

FIGS. 4a-4¢ schematically show exemplary methods for
generating search queries, usable in various method and
system embodiments.

FIGS. 5a-5¢ schematically show exemplary metadata
vector embeddings and supplementary aspect data vector
embeddings, usable in various method and system embodi-
ments.

FIG. 6 shows a simplified computing device ingesting and
retrieving documents, according to an embodiment.

The figures are meant for illustrative purposes only and do
not serve as a restriction of the scope or the protection as laid
down by the claims.

DETAILED DESCRIPTION

The following is a description of certain embodiments,
given by way of example only and with reference to the
figures.

In one embodiment there is provided a computer-imple-
mented method for creating a search index for a collection
of documents, as used herein, “documents” may refer to any
suitable form of digital content (text, audio, images, video,
multimedia, and the like) that may have metadata and
information bearing (content) data, stored in a digital docu-
ment repository, and/or a computer-implemented method for
retrieving one or more documents from a collection of
documents stored using corresponding multi-aspect vectors
having structure and dimension obtainable from executing a
computer-implemented method for creating the search
index.

Some embodiments include an embedding technique
wherein a document content vector is fused with document
metadata aspect vectors (and possibly supplementary aspect
vectors) in a way that preserves the ordering of distinct
contributions each aspect vector space has made to the
resulting multi-aspect vector space. Each kind of document
metadata may have a determined structure, based on which
a distinct embedding is calculated by transforming the
contents and structure of this metadata aspect into a vector
that resides in a vector space belonging to this metadata
aspect. The document content vector and a plurality of
metadata aspect vectors are precomputed for each docu-
ment, and the resulting vector contributions are fused into a
corresponding multi-aspect vector for each document, which
is then stored in the document database. Storing and retriev-
ing documents based on fused multi-aspect vector embed-
dings allows faster and more efficient identification and
retrieval of relevant documents in response to search or
document comparison queries. Multi-aspect vector embed-
dings is particularly useful when dealing with large-scale
collections of digital documents.

By embedding the semantic content (or other information-
bearing data) of documents, embedding the metadata aspects
and other aspects of these documents, and then fusing the
resulting embedding vectors into a composite vector in a
deterministic manner, the method can provide an efficient
search embedding and allows search queries to retrieve
relevant existing documents with accurate results, in a way
that reduces the calculation load (in terms of fewer process-
ing clock cycles per query) needed for producing relevant
document search results. The method does not need to
proceed through iterative stages of post-filtering based on
input from the user who attempts to fine-tune the search and
indexing results. With the more comprehensive fused
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embedding, the result of an initial search query is more
likely to be accurate and relevant, thus needing less iterative
search query adjustments and post-filtering information to
be supplied by the user. The operational load on the system’s
power, hardware, and software resources is thereby reduced.
This reduced number of queries and post-filtering of search
results means that more computing resources (in calcula-
tions and/or expended energy per unit of time) remain
available for other tasks or user queries. By implementing
the proposed method on a computer (device, system, or
network), the computer can handle more queries and is,
therefore, easier to scale up to larger numbers of concurrent
users and interactions.

The term “embedding” refers herein to the process of
generating vectors from the document content and/or meta-
data, thereby representing the data in a structured and
meaningful way. Each vector produced by a particular
embedding operation is composed of an ordered tuple of
components (the number of components N having a positive
integer value, i.e., N=1, 2, 3, ... EN™), wherein the number
and mutual ordering of the vector components depends on
the particular embedding operation, whereas the actual
numerical values obtained for each vector component
depends on the input of the embedding operation.

The term “vector space” is used herein in a specific sense,
referring to the space that includes all possible vectors that
may be produced using the embedding operation. However,
vector embedding methods are typically devised to produce
only vectors within a specified subspace corresponding to a
finite range of magnitudes (e.g., from -1 to 1) so that the
entire set of possible vectors can be normalized and the
distance metrics defined between pairs of vectors stay within
well-defined bounds and remain meaningful. In the present
context, the term vector space therefore does not refer to a
vector space in a strict mathematical sense because additions
or subtractions of two vector embedding elements typically
has no sensible meaning and/or may produce vectors that
fall outside the subspace of allowed magnitudes.

The term “indexing” refers herein to processes in which
vectors and their neighbours are clustered to allow quicker
and/or more efficient retrieval.

FIG. 1—System Components

FIG. 1 schematically presents a functional component
diagram illustrating an exemplary embodiment of a com-
puter-implemented System 10 for creating search indexes
from documents and for retrieving one or more documents
from a collection of documents using vector embeddings.

System 10 is configured to ingest source documents 20
existing in a customer File Repository 18 (e.g., a collection
of customer’s technical documents, project documents,
e-mails, images, videos, music, multimedia content, etc.)
and to transform these documents 20 into searchable embed-
ding vectors and content objects that are stored within a
database 30 of the System 10. A user with access rights to
File Repository 18 can subsequently submit a query to
System 10. System 10 is configured to process and transform
the query into an embedding vector, which has a pre-defined
vector structure that is compatible with the structure of the
vectors that were obtained during the embedding of the
ingested documents. System 10 is further configured to
compare and determine a degree of similarity or closeness
between, on the one hand, the vector associated with the
query and, on the other hand, the vectors associated with
ingested documents. System 10 is further configured to
determine, from the results of the comparisons, which
document(s) is (are) considered relevant for the information
in the query. Based on these results, System 10 returns 124
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to the user a set of documents 125 or a set of references that
point to the storage locations of those documents.

The exemplary System 10, shown in FIG. 1, includes a
Client Interface 16, a File Repository 18, an Embedding
Pipeline 22, a Database 30, and a Query Processing Engine
38.

Embedding Pipeline 22 includes a Data Extraction Com-
ponent 24, a Content Embedding Component 26, a Metadata
Embedding Component 27, and a Vector Fusing Component
28.

Database 30 includes a Content Storage Component 32
and a Vector Storage Component 34.

Query Processing Engine 38 includes a Query Embedding
Component 40, a Similarity Calculation Component 42, an
approximate nearest neighbour (ANN) Search Component
43, a Similarity Ranking Component 44, and a Document
Retrieval Component 46.

In this example, the Embedding Pipeline 22 is configured
to receive documents one-by-one from a Document (or other
digital content) Storage 20 that is stored in File Repository
18 and which may be located on one or more remote sites
external to System 10. In this example, the Embedding
Pipeline 22 is further configured to forward a respective
Document 54' and make binary data contained in this
respective Document 54' available to the Extraction Com-
ponent 24, which in this example proceeds in a first-
document-in-first-document-out (FIFO) order. The Embed-
ding Pipeline 22 may be activated if a document is added to
File Repository 18 or if an existing document in File
Repository 18 is updated or otherwise changed.

The Extraction Component 24 is configured to use text
extraction methods, such as optical character recognition
(OCR), convolutional neural network (CNN), Shazam Algo-
rithm, or the like, to identify structured information about
the semantic contents and/or layout of the document. The
document content obtained by the Extraction Component 24
is forwarded to the Content Embedding Component 26.

Extraction Component 24 is additionally configured to
extract existing metadata from the document, which may be
stored within the document file but is separate from the
semantic content. Examples of such metadata include a
creation date, a modification date, a deletion date, a file title,
a file size, a file type, an author, an owner, a version, a
language, a short description, copyright information, and the
like.

Furthermore, the Extraction Component 24 is configured
to extract additional aspect data from the document, which
may not be part of the original document file but includes
additional information about the document. Examples of
such supplementary aspect data include a content type, a
content summary, a content language, an access restriction,
a sensitivity/privacy classification, a digital or physical file
storage location, a usage history of the document, and the
like.

The extracted metadata and supplementary aspect data
obtained by the Extraction Component 24 are forwarded to
the Metadata Embedding Component 27.

Content Embedding Component 26 is configured to pro-
cess the semantic content extracted from the document and
to generate a vector representation of this content for each
document by applying a pre-trained semantic content
embedding model.

The semantic content embedding vectors obtained from
the Content Embedding Component 26, as well as any
document identifiers and a set of (original) metadata for each
document, are stored as a search index in the Content
Storage Component 32. The Content Storage Component 32
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is configured to store information from Documents 54,
possibly including document contents and document meta-
data.

The custom Vector Storage Component 34 is configured
to store the corresponding multi-aspect vectors for each
Document 54. The multi-aspect vectors represent semantic
content, metadata, and supplementary aspect data of the
corresponding documents in a high-dimensional vector
space.

The Client Interface 16 includes a Query Input Compo-
nent 17 that is configured to receive at least one search query
from a user.

The Query Embedding Component 40 is configured to
receive the search query from the Client Interface 16, and to
extract therefrom semantic data, metadata, and supplemen-
tary aspect data by applying pre-trained embedding models.
The Query Embedding Component 40 is additionally con-
figured to calculate a semantic content vector from the
semantic data and to calculate one or more query metadata
aspect vectors for each search query received. The Query
Embedding Component 40 is further configured to fuse 74
the semantic query content vector with one or more query
metadata aspect vectors and thereby obtain a Multi-Aspect
Query Vector 78 for each search query received from the
Client Interface 16.

The ANN Search Component 43 is configured to perform
approximate nearest neighbour searches on the multi-aspect
vectors 78 to narrow down the candidate documents before
specific query-vs-documents comparisons are made. The
ANN Search Component 43 may use a technique based on
hierarchical navigable small world (HNSW) graphs or other
suitable techniques to select a subset of documents to be
compared with the Multi-Aspect Query Vector 78 before the
Similarity Calculation Component 42 commences with cal-
culating similarity metric values.

Similarity Calculation Component 42 is configured to
calculate a similarity metric value associated with an indi-
vidual comparison between (on the one hand) a query and
(on the other hand) an individual document. Each respective
similarity metric value is associated with a particular one of
the documents and expresses a degree of similarity between
the Multi-Aspect Query Vector and the multi-aspect vector
for the associated document. The similarity metric used by
Similarity Calculation Component 42 may be a weighted
Euclidean inner product metric, which is discussed herein
below with reference to FIG. 3.

Similarity Ranking Component 44 is configured to rank
the documents based on their similarity scores obtained from
the Similarity Calculation Component 42 and to retrieve the
R highest ranked documents. Here, R represents a positive
integer (R=1, 2, . . . €N™"), which may be supplied by the
system, by the user, or by another source).

The document retrieval component 46 is configured to
fetch, from the Content Storage Component 32, the R
documents that have the highest degree of similarity based
on the calculated similarity metric values and to return to the
user the R top-ranked documents possibly arranged by order
of (ascending or descending) similarity value indicated by
the Similarity Ranking Component 44.

FIG. 2—Embedding

FIG. 2 schematically shows a flowchart illustrating an
exemplary embodiment of a computer-implemented Docu-
ment Ingestion Method 50 for ingesting a Document 54 into
an embedding system, for instance, into the exemplary
System 10 from FIG. 1.

The exemplary Document Ingestion Method 50 involves
a set of operations 56-74 that are performed on individual
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Documents 54, which are ingested from the Document
Storage 20. Through operations 56-74, a respective indi-
vidual Document 54' is processed to generate a Multi-Aspect
Vector 78. The transformation operations may involve pre-
trained embedding models and/or pre-defined computations
that map numerical or categorical aspect data into vectors
that have a predetermined order and number of vector
elements. The distinct Multi-Aspect Vectors 78 obtained for
the respective Document 54' are stored in a vector database,
like, for instance, in Vector Storage Component 34. The
pre-trained embedding models and predetermined compu-
tations that are used for generating the multi-aspect vectors
78 for the documents are stored in or are otherwise made
accessible to System 10 so that they remain available during
subsequent operations that involve receiving and transform-
ing a query into a vector embedding (see, e.g., FIG. 3).

Document De-queue From Database Action 52, which is
executed by the Embedding Pipeline 22, involves fetching
Document 54 from a collection of documents that are
initially stored in Document Storage 20. Each Document 54
fetched from Document Storage 20 includes document con-
tent and one or more kinds of metadata. The retrieved
Document 54 is temporarily inserted (pushed) at the back of
the Embedding Pipeline 22 to allow documents to be taken
out and processed one at a time and in an orderly fashion,
thus providing scalability to larger workflows in which fresh
documents and document updates are supplied to Document
Storage 20, possibly at varying supply sizes and/or irregular
intervals.

In one embodiment, Semantic Content Data Extraction
Action 56, executed by the Content Embedding Component
26, includes supplying Document 54 to an OCR text extrac-
tion component (not shown), which may involve natural
language processing techniques, to identify structured infor-
mation about the words and layout in Document 54. Extract-
ing Semantic Content Data 56 from Document 54 may
include removing irrelevant information such as special
symbols and formatting and may involve dividing Docu-
ment 54 into chunks based on paragraphs and/or phrases
and/or units of words, depending on the content embedding
model used. Alternate embodiments may use other content
extraction methods, e.g., CNN or the like.

Content Vector Semantic Calculation Action 58, also
executed by the Content Embedding Component 26,
involves calculating a Content Vector 60 from the semantic
content data extracted 56 from Document 54. The content
embedding model to Calculate Semantic Content Vector 58
transforms the extracted semantic content data into a high-
dimensional Content Vector 60. The Semantic Content Vec-
tor Calculations 58 performed on the semantic content yield
a first Content Vector 60, for example, indicated with

Tslef ¢f .. . JER™, which represents the semantic
content of the j* document in Document Storage 20. R™ is
an Nc-dimensional Euclidian vector space in which the set

of all possible content vectors {?f } resides. The dimension-
ality Nc of the vector space R™* may be very high, for
example, in the order of several hundred or more. Distinct
Documents 54 that have identical (or similar) semantic
content yield vectors 60 that coincide with (or are located
relatively close to) each other within the content vector
space R™. Example content embedding models for gener-
ating the Content Vector 60 may include the use of Large
Language Models (LLM) or Neural Networks (NN).
Document Metadata Extraction Action 62, executed by
the Metadata Embedding Component 27, involves supplying
the same Document 54 to a metadata extraction model. This
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metadata extraction model extracts existing metadata from
Document 54. The one or more kinds of metadata may
include one or more of a creation date of the document, a
modification date of the document, a deletion date of the
document, a file title of the document, a file size of the
document, a file type of the document, an author of the
document, an owner of the document, a version of the
document, a language of the document, and a description of
the document.

Metadata Aspect Vector Semantic Calculation Action 64,
also executed by the Metadata Embedding Component 27,
involves calculating one or more metadata aspect vectors
66a, 665 from the metadata retrieved from the respective
Document 54'. Each respective Metadata Aspect Vector 66
is associated with a corresponding kind of metadata and is
calculated using a determined embedding model or mapping
computation for the specific kind of metadata. The calcula-

tions 64 yield K distinct metadata vectors m*’=[m,"
m,* ... |ER™"* wherein the label k (with possible integer
values k=1, . . . , K (EN™) represents a respective distinct
metadata aspect in the set of all K metadata aspects for the
j* document. Each space R represents an Nmk-dimen-
sional Euclidian vector space in which the set of all possible

vectors {m*’} for that particular metadata aspect k resides.
The dimensionalities Nmk of each of the vector spaces
R k=1, . . ., K) is typically low (e.g., less than 32
dimensions). Distinct Documents 54 that have identical (or
similar) metadata will yield vectors 66 that coincide with (or
are located relatively close to) each other within the respec-
tive metadata vector spaces R™™*,

Supplementary Aspects Derivation Action 68, optionally
executed by the Metadata Embedding Component 27,
involves processing the respective Document 54' to identify
one or more kinds of supplementary aspect data, which may
not be part of the original document content and metadata.
This supplementary aspect data may, for instance, include a
content type, a content summary, a content language, an
access restriction, a sensitivity classification, a digital or
physical file storage location, and/or a usage history per-
taining to the corresponding Document 54.

Supplementary Aspect Vectors Calculation Action 70,
also executed by the Metadata Embedding Component 27,
involves calculating one or more supplementary aspect
vectors 72a, 72b from Document 54. Each respective
supplementary aspect vector 72 is associated with a corre-
sponding kind of supplementary aspect data and is calcu-
lated using a distinct embedding model or mapping com-
putation for the specific kind of supplementary aspect data.
Calculating Supplementary Aspect Vectors 70 yield P dis-

tinct supplementary aspect vectors a?V=[a,?’ a,?¥ ... |€
R™?, wherein the label p (with possible integer values
p=1, . . ., PEN™) represents a respective distinct supple-
mentary aspect in the set of all P supplementary aspects for
the i document. Each space R represents a Nap-dimen-
sional Euclidian vector space in which the set of all possible

vectors {XP 7} for that particular supplementary aspect p
resides. The dimensionality Nap of each of the vector spaces
R (p=1, . .., P) is typically low (e.g., less than 700
dimensions, and may be less than ten dimensions in some
circumstances). Distinct Documents 54 that have identical
(or similar) content and/or metadata characteristics may
yield supplementary aspect vectors 72 that coincide with (or
are located relatively close to) each other within the respec-
tive supplementary aspect vector spaces R
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At Vector Fusing action 74, which is executed by the
Vector Fusing Component 28, the Content Vector 60 (?j) is

fused with the one or more Metadata Aspect Vectors 66 (m*”
for all k) and with the one or more Supplementary Aspect

Vectors 72 (a?” for all p). The fusing operation yields a
Multi-Aspect Vector 78 (aj) for Document 54. The fusing
74 involves concatenating the various vectors ‘<7 and m*
and a*¥ associated with Document 54 to obtain the multi-
aspect vector d’. This concatenation is defined by the
composite operation ¢/Rm'YRm>R ... Ra'“Ra?>
R ...=d’, thus yielding the multi-aspect vector d’ that
resides in a composite vector space RY =R™DR'D
RY™D .. . ORY™ DRV .. .. Here, the binary operator

symbol R is used to indicate a concatenation of the two
vectors operands surrounding the operator, i.e. the expres-

sion X Ry means [X, X, ... |R[y, ¥, . .. ] resulting in the
composite vector [X; X, . . . ¥V, V5 . . . |. Furthermore, the
binary operator symbol € is used to indicate the rendering
of a direct product of the two vector space operands sur-
rounding this operator.

Return Action 76 involves proceeding to Document De-
queue From Database Action 52 and fetching the next
Document 54 from the collection of documents stored in
Document Storage 20. The operations 52-74 are repeated for
that next Document 54 so that a next Multi-Aspect Vector 78
is obtained for that next Document 54.

By repeating the operations 52-74 for each document
retrieved from the Document Storage 20, a set of document

vectors { d’} is obtained. Each d” represents the N-dimen-
sional Multi-Aspect Vector 78 associated with the i docu-
ment in the database, and each resides in the composite
N-dimensional Euclidian vector space R”. This space R”
is composed of the vector space for the semantic content
R combined with all vector spaces R™"* (for all
k=1, ..., K) for the metadata aspects and combined with all
vector spaces RY% (for all p=1, . . ., P) for the supple-
mentary aspects. The dimensionality N of the multi-aspect
vector space R” is equal to Nc+Nm1+Nm2+ . . . +Nal+
Na2+ .. ..

FIGS. 3 and 4a-c—Search Querying

FIG. 3 shows a flowchart that schematically illustrates an
exemplary embodiment of a Document Retrieval Method 90
for retrieving relevant documents from a document database
in response to an active Query 94 received from a user or a
passive Query 128 generated by System 10 in response to a
user accessing another document from the database.

The exemplary Document Retrieval Method 90 includes
transforming Query 94/128 into a Multi-Aspect Query Vec-
tor 116 using pre-trained embedding models, calculating
similarity values 120 between the Multi-Aspect Query Vec-
tor 116 and Multi-Aspect Vector 78, ranking the documents
based on the calculated similarity values 122, and returning
124 the R highest ranked documents 125. The exemplary
Document Retrieval Method 90 further includes the use of
ANN Search 118 to reduce the number of comparisons and
similarity calculations and thereby speed up the document
retrieval process.

In the exemplary Document Retrieval Method 90, it is
assumed that document Multi-Aspect Vectors 78 have
already been computed and stored in the database 30 Vector
Storage Component 34 in advance, that is, prior to the
moment that the search Query 94/128 is received in the
present exemplary Document Retrieval Method 90.
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Search Query Receipt Action 92 involves receiving a
search Query 94 from the user, which represents the infor-
mation that the user actively seeks or may potentially want
to receive.

As illustrated in FIG. 4a, the user may be presented with
a digital user interface (which may be part of a desktop-
based search application, a web browser, or data manage-
ment system) that includes a search input form 94a with
dropdown boxes, input fields, checkboxes and/or value
slider elements, which allow the user to select categories and
specify ranges relating to content and properties (such as
content type, creation date, etc) of documents that the user
desires to retrieve from the File Repository 18.

As illustrated in FIG. 4b, the user may alternatively or
additionally be presented with a digital interface, including
a search input form 94 with a prompt in which the user can
enter a textual description or question relating to the docu-
ment contents and properties that the user wants to retrieve.

As illustrated in FIG. 4c, construction of a Multi-Aspect
Query Vector 116 and retrieval of documents may alterna-
tively or in addition be triggered when a user opens or has
already accessed a particular Document 54' from the data-
base, thereby allowing the system to analyse the document
126 and retrieve related documents that are closely related in
semantic content, creation date, or any other aspect. In this
case, the engine may retrieve the embedding vector that was
already created and stored for the document that is currently
being accessed and copy (part or all of) the existing docu-
ment embedding vector to a passive Query 128 vector, after
which the system proceeds by performing similarity search-
ing 120 and ranking 122.

In each of these examples, Query 94 is processed and
transformed into a multi-aspect vector using similar embed-
ding models as were used during the processing and trans-
forming of Documents 54 into multi-aspect vector embed-
dings (see, e.g., exemplary Document Ingestion Method 50
in FIG. 2).

Actions 96-114 involve extracting and transforming
Query 94 into a Multi-Aspect Query Vector 116 by extract-
ing semantic content, metadata, and supplementary aspects
and calculating associated vectors using pre-defined embed-
ding calculations and/or pre-trained embedding models in a
similar manner as described herein above for actions 56-74
of exemplary Document Ingestion Method 50 performed on
individual documents. These embedding rules and models
may focus on different portions of the search Query 94/128.

The embedding model for the semantic content of Query
94 provided via the Prompt Query 945 (FIG. 4b) may
include a natural language processing (NLP) machine learn-
ing model, such as a transformer-based model that maps the
semantic content of the query into a high-dimensional vector
space where semantically similar queries are closer together.
The content embedding model used in action 98 for gener-
ating a vector 100 representing the semantic content of
Query 94/128 may be analogous to the content embedding
model that is used in action 58 for generating embedding
vectors 60 representing the semantic contents of the indi-
vidual Documents 54.

In Vector Fusing action 114, the output vectors, Content
Vector 100, Metadata Aspect Vector(s) 106, and Supplemen-
tal Vector(s) 112, of the associated transformation calcula-
tions, Semantic Content Vector Calculation 98, Metadata
Aspect Vector Calculation 104, and Supplementary Aspect
Vector Calculation 110, are fused to obtain a Multi-Aspect

Query Vector 116 (q’e R"), where N is the same dimen-
sionality (e.g., sum of all the dimensions of Content Vector
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100, Metadata Aspect Vectors 106, and Supplementary
Aspect Vectors 112) of the multi-aspect vector space as
described herein above. Query 94/128 is thus mapped into
the same vector space and follows the same mapping rules
as the rules that were used during the embedding of the
Multi-Aspect Vectors 78 for Documents 54. This mapping
congruency ensures that Queries 94 and Documents 54,
which are considered close with respect to the semantic
content, the metadata, and the supplementary aspect content,
will be transformed into Multi-Aspect Vector 78 and Multi-
Aspect Query Vector 116 that are closer together in this
vector space R”. Queries 94/128 can thereby be approxi-
mately matched (i.e., determined to be sufficiently close) to
relevant Documents 54, even if there are no exact matches
between keywords in Query 94/128 and semantic contents
and metadata in the Documents 54.

ANN Search Action 118 involves optimizing the search
process in case a large volume of documents is stored in the
database 30. This optimization may involve an approximate
nearest neighbour (ANN) search indexing technique to
reduce the set of candidate documents and the number of
Similarity Values Calculations 120 of specific similarity
metric values needed to find the most relevant documents. In
this example, the ANN search optimizer involves a Hierar-
chical Navigable Small World (HNSW) graph-based method
that organizes the multitude of document Multi-Aspect
Vectors 78 in a graph structure, wherein each graph node (or
“vertex”) represents a vector and selected graph nodes that
represent similar vectors are interconnected by edges (or
“links”). The use of the HNSW graph renders the matching
computation phase more efficient and thus enables fast
nearest neighbour searches.

Similarity Values Calculation Action 120 represents a
query-to-document matching phase, which is executed after
Query 94 has been Fused 114 into a Multi-Aspect Query
Vector 116. Calculating Similarity Values 120 involves
calculating a similarity metric value that attributes a numeri-
cal value to a degree of closeness between the Multi-Aspect
Query Vector 116 and Multi-Aspect Vectors 78. In this
example, the similarity metric is a Weighted Euclidian Inner
Product metric M, which is computed by the following
expression:

N .
J
Vi d

o7
(1l -1 1

Here:
a represents the Multi-Aspect Query Vector 116;
HEH represents the magnitude of the Multi-Aspect Query

Vector 116. In general, a magnitude H?H of a generic

. . . N
N-dimensional vector z is defined as || x|=VZ,_,Vx,*

i

d7 represents the Multi-Aspect Vector 78; for the j
document;

HHJ'H represents the magnitude of the Multi-Aspect Vector
78; for the j* document;

w represents a masking/Weight Vector 119, which has the
same dimensionality as the Multi-Aspect Query Vector
116 and the document Multi-Aspect Vector 78. The
Weight Vector 119 has vector components w; that each
have a determined value in a range between —1 and 1;
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The summation of weighted products Tw,-q,-d/, represents
a modified vector inner product between the query vector E

and a respective vector d’ of the set of all document vectors
{d}

By setting each weight w, for the various aspects to a
particular value within the range [-1, 1], the Similarity
Values Calculation 120 120 is allowed to attribute different
levels of importance to the various vector contributions and
aspects and, in particular, is allowed to ignore certain
metadata and supplementary aspects by setting their corre-
sponding aspect-weights to 0.

The weighted Euclidian inner product distance value for

the query vector E relative to a document vector d7 is
calculated for all the document vectors { d’}_, ; or for a

selected subset of document vectors {3’ } to deter-

subset of j>
mine a similarity metric value for the query vector E relative
to each of all documents or relative to each of the selected
subset of document vectors.

One benefit of including using Multi-Aspect Vectors 78
and Multi-Aspect Query Vectors 116 that have additional
information beyond the contents of a document in the
Similarity Values Calculation 120 is that it may eliminate the
need for a post-filtering step to locate similar documents and
may actually include similar documents that would have
been excluded in a post-filtering query.

Value Similarity Ranking Action 122 represents a phase in
which the calculated similarity values of Similarity Values
Calculation 120 are sorted in descending order, assuming
that the similarity metric is defined (or transformed) in such
a way as to indicate a closer match with a higher metric
value. In alternative embodiments, this action 122 may
involve sorting the calculated metric results in an alternate
order, e.g., ascending order, depending on the definition and
sign of the closeness metric being used in Similarity Values
Calculation 120.

In Top-Ranking Document Return Action 124, the Set of
R Documents 125 with the highest-ranking similarity metric
values representing the smallest distances are retrieved from
the Document Storage 20. The integer size R may be fixed
or selected by the user. The Set Of Documents 125 retrieved
documents are provided to the user via the Client Interface
16. Alternatively, or in addition, System 10 may provide the
user information regarding the retrieved Set of Documents
125, such as document identification tags, which may allow
the user to gain access to these documents.

FIGS. 5a-5¢—Extract Document Aspects

FIGS. 5a-5¢ schematically illustrate exemplary metadata
aspects that may be extracted by the methods and systems
according to the present invention, for instance, by the
exemplary System 10 shown in FIG. 1 or in the exemplary
Document Ingestion Method 50 shown in FIG. 2.

FIG. 5a shows an exemplary one-dimensional vector
(sub)space 130 onto which the creation date of each docu-
ment may be mapped using a metadata embedder.

In this example, the creation date metadata embedding
involves specifying a minimum year value (e.g., 1970) and
a maximum year value (e.g., 2100), followed by normalizing
the minimum year value to the minimum vector value -1.0
and normalizing the maximum year value to the maximum
vector value +1.0 in the vector subspace.

The current time value corresponding with the creation
date of the document indicated in the document metadata is
extracted and is used as input for a linear interpolation
function that transforms the linear distance of the creation
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date between the minimum and maximum year values into
a linear vector position between —1.0 and +1.0.

FIG. 55 shows another exemplary one-dimensional vector
(sub)space 136 onto which the document content type of
each document may be mapped using a supplementary
metadata embedder. The content type may first have been
extracted from Document 54 as supplementary metadata
using a separate data enrichment process (see, e.g., Supple-
mentary Aspect Derivation 68 in FIG. 2).

In this example, the content-type embedding involves
choosing discrete document content classes, such as text
files, PDF files, word files, image files, video files, and audio
files, and then associating each content class with a specific
value in the vector subspace to be produced by the Metadata
Embedding Component 27 from each input document. For
instance, documents with a document content class “text
file” may be mapped onto the value —1.0, documents with a
content class “image file” may be mapped onto the value
+0.25, documents with a content class “video file” may be
mapped onto the value +0.75, and documents with a content
class “audio file” may be mapped onto the value +1.0. Using
this exemplary convention, documents with a purely textual
content class will be mapped into the vector (sub)space to a
value of -1.0. In contrast, purely audio documents will be
mapped to a value of +1.0.

FIG. 5¢ shows yet another exemplary one-dimensional
vector (sub)space 142 onto which the sensitivity level of
each document may be mapped using a supplementary
metadata embedder. Again, this sensitivity level data may
first have been extracted from the document as supplemen-
tary metadata in a separate enrichment process, which may
also be executed by the Metadata Embedding Component
27. In this example, the sensitivity-level embedding involves
choosing discrete document sensitivity levels, such as “pub-
lic”, “general”, “confidential”, and “highly confidential”,
and then mapping the specific sensitivity level of each
document onto a sensitivity-level specific value in the 1-di-
mensional vector subspace. This mapping may be performed
by the Metadata Embedding Component 27 from each input
document received. For instance, documents with a sensi-
tivity level of “public” may be mapped onto the value -1.0,
documents with a sensitivity level of “general” may be
mapped onto the value 0.0, documents with a sensitivity
level of “confidential” may be mapped onto the value +0.5,
and documents with sensitivity level “highly confidential”
may be mapped onto the value +1.0.

Other Embodiments

The various embodiments may be embodied in other
specific forms. The described embodiments are to be con-
sidered in all respects only as illustrative and not restrictive.
The intended scope of the protection is, therefore, indicated
by the appended claims rather than by the foregoing descrip-
tion. It will be apparent to the person skilled in the art that
alternative embodiments can be conceived and reduced to
practice. All changes that come within the meaning and
range of equivalency of the claims are to be embraced within
their scope to the extent permitted by applicable national
laws and/or intergovernmental agreements.

Computer Considerations

Those of skill in the art would understand that information
and signals may be represented using any of a variety of
different technologies and techniques. Those of skill would
further appreciate that the various illustrative logical blocks,
components, circuits, and algorithm steps described in con-
nection with the embodiments disclosed herein may be
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implemented as electronic hardware, computer software, or
combinations of both. To illustrate this interchangeability of
hardware and software, various illustrative components,
blocks, components, circuits, and steps have been described
above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application. Still, such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the claimed embodiments.

Referring now to FIG. 6, an exemplary computing device
600 is shown, in which one or more technologies may be
implemented. Computing Device 600 may include one or
more instances of processors 602, of memories 604, of
inputs 608, and of (display screens or other) presentation
hardware 612, all interconnected along with the network
interface 606 via a bus 616. One or more network interfaces
606 allow computing device 600 to connect via the Internet
or other networks 150, 250). Memory 604 generally com-
prises a random access memory (“RAM”), a read-only
memory (“ROM?”), and a permanent mass storage device,
such as a disk drive.

Memory 604 may contain one or more instances of a file
repository 18, Document Ingestion Method 50, Document
Retrieval Method 90, or other informational data described
herein. These and other software components may be loaded
from a non-transitory computer-readable storage medium
618 into memory 604 of the computing device 600 using a
drive mechanism (not shown) associated with a non-transi-
tory computer-readable storage medium 618, such as a
floppy disc, tape, DVD/CD-ROM drive, flash card, memory
card, or the like. In some embodiments, software or other
digital components may be loaded via the network interface
606 rather than via a computer-readable storage medium
618. In some embodiments, Computing Device 600 may
include many more components than those shown in FIG. 6.
Still, not all conventional components of a computing device
need to be shown in order to disclose an illustrative embodi-
ment.

The various illustrative logical blocks and components
described in connection with the embodiments disclosed
herein may be implemented or performed with a general-
purpose processor, a digital signal processor (DSP), an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to per-
form the functions described herein. A general-purpose
processor may be a microprocessor, but in the alternative,
the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more microprocessors in conjunc-
tion with a DSP core, or any other such configuration.

The steps of a method or algorithm described in connec-
tion with the embodiments disclosed herein may be embod-
ied directly in hardware, in a software module executed by
a processor, or in a combination of the two. A software
module may reside in RAM memory, flash memory, ROM
memory, EPROM memory, EEPROM memory, registers,
hard disk, solid state disk, removable disk, CD/DVD-ROM,
or any other form of storage medium known in the art. An
exemplary storage medium is coupled to the processor such
that the processor can read and write information to the
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storage medium. In the alternative, the storage medium may
be integral to the processor. The processor and the storage
medium may reside in an ASIC. The ASIC may reside in a
user terminal. In the alternative, the processor and the
storage medium may reside as discrete components in a user
terminal.

The invention claimed is:

1. A computer-implemented method for creating a search
index for a collection of documents stored in a document
storage, and for retrieving one or more documents from the
collection based on a query;

wherein the method comprises, for each respective docu-

ment:

calculating, using a content embedding model, a con-
tent vector from the content of the respective docu-
ment;

calculating one or more metadata aspect vectors, each
respective metadata aspect vector associated with a
corresponding kind of metadata and being calculated
using a metadata embedding model;

fusing the content vector with the one or more metadata
aspect vectors, to obtain a multi-aspect vector for the
document, and

storing the multi-aspect vector in a vector database;

wherein the method further comprises:

receiving, from a query processing engine, a multi-
aspect query vector composed of a semantic content
vector and one or more metadata aspect vectors
associated with content and metadata of the query,
the multi-aspect query vector having a dimension
and element ordering corresponding to the multi-
aspect vectors obtained for the documents;

calculating similarity metric values based on compari-
sons between the multi-aspect query vector and each
of a subset or all of the multi-aspect vectors for the
respective documents in the digital document data-
base;

ranking the calculated similarity metric values in con-
secutive order of value, and

providing, to a user via a user interface, an indication
of a subset of the digital documents for which the
calculated similarity metric values are optimal.

2. The method according to claim 1, wherein the one or
more kinds of metadata comprise one or more of a creation
date of the document, a modification date of the document,
a deletion date of the document, a file title of the document,
a file size of the document, a file type of the document, an
author of the document, an owner of the document, a version
of the document, a language of the document, and a short
description of the document.

3. The method according to claim 1, further comprising,
for each respective document:

processing the respective document to identify one or

more kinds of supplementary aspect data, including one
or more of a content type, a content summary, a content
language, an access restriction, a sensitivity classifica-
tion, a digital or physical file storage location, and a
usage history pertaining to the corresponding digital
document;

calculating one or more supplementary aspect vectors,

each respective supplementary aspect vector being
associated with a corresponding kind of supplementary
aspect data and being calculated using a determined
supplementary aspect embedding model;

wherein fusing to obtain the multi-aspect vector further

comprises fusing the one or more supplementary aspect
vectors.



US 12,517,879 Bl

15

4. The method according to claim 1, wherein the fusing
includes concatenating the semantic content vector with the
one or more metadata aspect vectors and optionally with the
one or more supplementary aspect vectors in a predeter-
mined order that is maintained for each of the documents,
thereby obtaining a collection of multi-aspect vectors that all
have identical dimensions and internal logical ordering of
the semantic content vector, the one or more metadata aspect
vectors, and optionally the one or more supplementary
aspect vectors.

5. The method according to claim 1, further comprising:

preprocessing the respective document using a machine

learning model to extract keywords, phrases, and/or
concepts relating from the content of the respective
document;
wherein calculating the semantic content vector for the
document includes processing the extracted keywords,
phrases, and/or concepts by the content embedding
model to obtain the semantic content vector residing in
a high-dimensional content vector space, and wherein
documents that have similar semantic content will yield
semantic content vectors that are located relatively
close to each other within the content vector space.
6. The method according to claim 1, further comprising:
executing approximate nearest neighbour processing
involving a hierarchical navigable small world graph
technique on the multi-aspect vectors, to generate clus-
ters of documents and corresponding multi-aspect vec-
tors that are presumed to have high similarity in seman-
tic content, metadata and supplementary aspect data.
7. The method according to claim 1, further including
inserting any fresh document that is newly added to the
digital document database into an embedding pipeline,
which then automatically executes the calculating of the
semantic content vector, the calculating of the one or more
metadata aspect vectors, and the fusing and obtaining of the
multi-aspect vector for the fresh document.
8. The method according to claim 1, further comprising:
receiving, from the user and via the user-interface, a
search query containing a set of user-supplied search
terms relating to semantic content and/or metadata of
the documents in the digital document database;

processing the search query to extract first terms pertain-
ing to document content and second terms pertaining to
one or more kinds of document metadata;
calculating a semantic content vector from the first terms
by using a query content embedding model;

calculating one or more query metadata aspect vectors,
each respective query metadata aspect vector being
associated with a respective kind of metadata, and by
using metadata embedding models for the respective
kind of metadata;

fusing the semantic query content vector with the one or

more query metadata aspect vectors to obtain the
further multi-aspect query vector for the search query.

9. The method according to claim 8, further comprising,
for each query:

processing the query to identify one or more kinds of

supplementary aspect data pertaining to the query;
calculating one or more supplementary aspect vectors,
each respective supplementary aspect vector being
associated with a corresponding kind of supplementary
aspect data and being calculated using a determined
supplementary aspect embedding model;
wherein fusing to obtain the multi-aspect query vector
further comprises fusing the one or more supplemen-
tary aspect vectors.
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10. The method according to claim 1, wherein calculating
the similarity metric values for respective ones of the digital
documents includes utilizing a weighted Euclidean inner
product as a similarity metric for comparing the multi-aspect
vector with the multi-aspect query vector, the weighted
Euclidian inner product being defined as

e )
Zv wi-gi-df
=1
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wherein E and HEH represent the multi-aspect query
vector and its magnitude, respectively; wherein d7 and

HH" || represent the multi-aspect vector (78) for the j*
document and its magnitude, respectively; and

wherein w represents a masking vector, with each vector
component w, having a value in a range between —1 and
1.

11. The method according to claim 1, wherein ranking the
calculated similarity metric values comprises applying a
relevance ranking algorithm that accounts for both semantic
similarity and metadata similarity, wherein higher similarity
scores correspond to higher ranking positions; and

wherein providing the indication of the subset of digital

documents includes retrieving and returning an integer
number R of highest-ranking documents as search
results.

12. The method according to claim 1, further comprising:

performing an approximate nearest neighbour (ANN)

search in the digital document database, the ANN
search involving a hierarchical navigable small world
(HNSW) graph technique to find a reduced subset of
documents and corresponding multi-aspect vectors to
compare with the multi-aspect query vector before
calculating the similarity metric values.

13. A computing system comprising a processor and a
memory configured to retrieve one or more documents from
a collection of documents using vector embeddings, the
system further configured to:

preprocess each of the documents (54) in the collection

and to generate multi-aspect vectors for each document
using predetermined embedding models, wherein the
multi-aspect vectors represent semantic content, meta-
data, and possibly supplementary aspect data, of the
corresponding documents in a high-dimensional vector
space;

store the documents including document content, docu-

ment metadata, and corresponding multi-aspect vectors
for each document;

receive at least one search query;

generate a further multi-aspect query vector for each

search query received;

calculate similarity metric values by comparing the multi-

aspect query vector to a selection or all of the multi-
aspect vectors stored for the documents, and

return a selection of the stored documents that are ranked

based on the similarity metric values.

14. The system according to claim 13, wherein calculating
similarity metric values utilizes a weighted Euclidean inner
product as a similarity metric for comparing the multi-aspect
vector with the multi-aspect query vector, the weighted
Euclidian inner product being defined as
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wherein E and HEH represent the multi-aspect query

vector and its magnitude, respectively; wherein d7 and
|| represent the multi-aspect vector for the j** docu-
ment and its magnitude, respectively; and

wherein w represents a masking vector, with each vector
component w, having a value in a range between —1 and
1.

15. The system according to claim 13, further configured
to receive a search query from a user; and

to extract semantic data, metadata, and possibly supple-

mentary aspect data from the search query, to calculate
a semantic query content vector from the semantic data,
to calculate one or more query metadata aspect vectors,
each respective query metadata aspect vector being
associated with a respective item of metadata, and to
fuse the semantic query content vector with the one or
more query metadata aspect vectors to obtain the
multi-aspect query vector for each search query
received.

16. The system according to claim 13, further configured
to rank the documents based on the obtained similarity
metric values;

and to select and retrieve R highest-ranked documents.

17. The system according to claim 13, further configured
to perform an approximate nearest neighbour search on the
multi-aspect vectors to select a subset of documents for
comparison with the further multi-aspect query vector
before the similarity metric values are calculated, wherein
the approximate nearest neighbour search uses a technique
based on hierarchical navigable small world graphs.

18. A non-transitory computer-readable medium storing
instructions that, when executed by a processor, carry out a
method for creating a search index for a collection of
documents stored in a document storage, and for retrieving
one or more documents from the collection based on a
query;

wherein the method comprises, for each respective docu-

ment:

calculating, using a content embedding model, a con-
tent vector from the content of the respective docu-
ment;

calculating one or more metadata aspect vectors, each
respective metadata aspect vector associated with a
corresponding kind of metadata and being calculated
using a metadata embedding model;

fusing the content vector with the one or more metadata
aspect vectors, to obtain a multi-aspect vector for the
document, and

storing the multi-aspect vector in a vector database;

wherein the method further comprises:
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receiving, from a query processing engine, a multi-
aspect query vector composed of a semantic content
vector and one or more metadata aspect vectors
associated with content and metadata of the query,
the multi-aspect query vector having a dimension
and element ordering corresponding to the multi-
aspect vectors obtained for the documents;

calculating similarity metric values based on compari-
sons between the multi-aspect query vector and each
of a subset or all of the multi-aspect vectors for the
respective documents in the digital document data-
base;

ranking the calculated similarity metric values in con-
secutive order of increasing or decreasing value, and

providing, to a user via a user interface, an indication
of a subset of the digital documents for which the
calculated similarity metric values are optimal.

19. The non-transitory computer-readable medium
according to claim 18, where the method further comprises,
for each respective document:

processing the respective document to identify one or

more kinds of supplementary aspect data, including one
or more of a content type, a content summary, a content
language, an access restriction, a sensitivity classifica-
tion, a digital or physical file storage location, and a
usage history pertaining to the corresponding digital
document;

calculating one or more supplementary aspect vectors,

each respective supplementary aspect vector being
associated with a corresponding kind of supplementary
aspect data and being calculated using a determined
supplementary aspect embedding model;

wherein fusing to obtain the multi-aspect vector further

comprises fusing the one or more supplementary aspect
vectors.

20. The non-transitory computer-readable medium
according to claim 18, wherein calculating the similarity
metric values for respective ones of the digital documents
includes utilizing a weighted Euclidean inner product as a
similarity metric for comparing the multi-aspect vector with
the multi-aspect query vector, the weighted Euclidian inner
product being defined as
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wherein E and HEH represent the multi-aspect query
vector and its magnitude, respectively; wherein d7 and

HH" || represent the multi-aspect vector (78) for the j*
document and its magnitude, respectively; and

wherein w represents a masking vector, with each vector
component w, having a value in a range between —1 and
1.
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